Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Proc Natl Acad Sci U S A ; 120(50): e2304074120, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38051767

Severity of neurobehavioral deficits in children born from adverse pregnancies, such as maternal alcohol consumption and diabetes, does not always correlate with the adversity's duration and intensity. Therefore, biological signatures for accurate prediction of the severity of neurobehavioral deficits, and robust tools for reliable identification of such biomarkers, have an urgent clinical need. Here, we demonstrate that significant changes in the alternative splicing (AS) pattern of offspring lymphocyte RNA can function as accurate peripheral biomarkers for motor learning deficits in mouse models of prenatal alcohol exposure (PAE) and offspring of mother with diabetes (OMD). An aptly trained deep-learning model identified 29 AS events common to PAE and OMD as superior predictors of motor learning deficits than AS events specific to PAE or OMD. Shapley-value analysis, a game-theory algorithm, deciphered the trained deep-learning model's learnt associations between its input, AS events, and output, motor learning performance. Shapley values of the deep-learning model's input identified the relative contribution of the 29 common AS events to the motor learning deficit. Gene ontology and predictive structure-function analyses, using Alphafold2 algorithm, supported existing evidence on the critical roles of these molecules in early brain development and function. The direction of most AS events was opposite in PAE and OMD, potentially from differential expression of RNA binding proteins in PAE and OMD. Altogether, this study posits that AS of lymphocyte RNA is a rich resource, and deep-learning is an effective tool, for discovery of peripheral biomarkers of neurobehavioral deficits in children of diverse adverse pregnancies.


Diabetes Mellitus , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Mice , Animals , Child , Humans , Pregnancy , Female , Alternative Splicing , Prenatal Exposure Delayed Effects/chemically induced , Ethanol , Diabetes Mellitus/chemically induced , Biomarkers/metabolism , RNA/metabolism , Fetal Alcohol Spectrum Disorders/genetics
2.
Front Cell Dev Biol ; 11: 1236356, 2023.
Article En | MEDLINE | ID: mdl-37829185

Introduction: Wnt/ß-catenin signaling controls cell division and lineage specification during embryonic development, and is crucial for stem cells maintenance and gut tissue regeneration in adults. Aberrant activation of Wnt/ß-catenin signaling is also essential for the pathogenesis of a variety of malignancies. The RNA-binding protein IGF2BP1 is a transcriptional target of Wnt/ß-catenin signaling, normally expressed during development and often reactivated in cancer cells, where it regulates the stability of oncogenic mRNA. Methods: In this study, we employed iCLIP and RNA sequencing techniques to investigate the role of IGF2BP1 in the post-transcriptional regulation of Wnt/ß-catenin-induced genes at a global level within colorectal cancer (CRC) cells characterized by constitutively active Wnt/ß-catenin signaling. Results and Discussion: In our study, we show that, in contrast to normal cells, CRC cells exhibit a much stronger dependency on IGF2BP1 expression for Wnt/ß-catenin-regulated genes. We show that both untransformed and CRC cells have their unique subsets of Wnt/ß-catenin-regulated genes that IGF2BP1 directly controls through binding to their mRNA. Our iCLIP analysis revealed a significant change in the IGF2BP1-binding sites throughout the target transcriptomes and a significant change in the enrichment of 6-mer motifs associated with IGF2BP1 binding in response to Wnt/ß-catenin signaling. Our study also revealed a signature of IGF2BP1-regulated genes that are significantly associated with colon cancer-free survival in humans, as well as potential targets for CRC treatment. Overall, this study highlights the complex and context-dependent regulation of Wnt/ß-catenin signaling target genes by IGF2BP1 in non-transformed and CRC cells and identifies potential targets for colon cancer treatment.

3.
Bone Res ; 11(1): 20, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37080994

Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate, where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Although nutritional status is a known regulator of long bone growth, it is largely unknown whether and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2CreERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone and that exogenous IGF-1 restored the phosphorylated Akt level and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2CreERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of chondroprogenitor cells.

4.
CNS Neurosci Ther ; 28(6): 922-931, 2022 06.
Article En | MEDLINE | ID: mdl-35238164

AIMS: The molecular genetic mechanisms underlying postoperative nausea and vomiting (PONV) in the brain have not been fully elucidated. This study aimed to determine the changes in whole transcriptome in the nucleus of the solitary tract (NTS) in an animal model of PONV, to screen a drug candidate and to elucidate the molecular genetic mechanisms of PONV development. METHODS: Twenty-one female musk shrews were assigned into three groups: the Surgery group (shrew PONV model, n = 9), the Sham group (n = 6), and the Naïve group (n = 6). In behavioral studies, the main outcome was the number of emetic episodes. In genetic experiments, changes in the transcriptome in the NTS were measured. In a separate study, 12 shrews were used to verify the candidate mechanism underlying PONV. RESULTS: A median of six emetic episodes occurred in both the Sham and Surgery groups. Whole-transcriptome analysis indicated the inhibition of the GABAB receptor-mediated signaling pathway in the PONV model. Baclofen (GABAB receptor agonist) administration eliminated emetic behaviors in the shrew PONV model. CONCLUSIONS: Our findings suggest that the GABAB receptor-mediated signaling pathway is involved in emesis and that baclofen may be a novel therapeutic or prophylactic agent for PONV.


Antiemetics , Animals , Antiemetics/therapeutic use , Baclofen/pharmacology , Baclofen/therapeutic use , Emetics , Female , Gene Expression Profiling , Postoperative Nausea and Vomiting/drug therapy , Shrews/physiology , Solitary Nucleus , Vomiting/drug therapy , Vomiting/prevention & control
5.
J Neurosci ; 41(31): 6775-6792, 2021 08 04.
Article En | MEDLINE | ID: mdl-34193554

Epigenetic modifiers are increasingly being investigated as potential therapeutics to modify and overcome disease phenotypes. Diseases of the nervous system present a particular problem as neurons are postmitotic and demonstrate relatively stable gene expression patterns and chromatin organization. We have explored the ability of epigenetic modifiers to prevent degeneration of rod photoreceptors in a mouse model of retinitis pigmentosa (RP), using rd10 mice of both sexes. The histone modification eraser enzymes lysine demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1) are known to have dramatic effects on the development of rod photoreceptors. In the RP mouse model, inhibitors of these enzymes blocked rod degeneration, preserved vision, and affected the expression of multiple genes including maintenance of rod-specific transcripts and downregulation of those involved in inflammation, gliosis, and cell death. The neuroprotective activity of LSD1 inhibitors includes two pathways. First, through targeting histone modifications, they increase accessibility of chromatin and upregulate neuroprotective genes, such as from the Wnt pathway. We propose that this process is going in rod photoreceptors. Second, through nonhistone targets, they inhibit transcription of inflammatory genes and inflammation. This process is going in microglia, and lack of inflammation keeps rod photoreceptors alive.SIGNIFICANCE STATEMENT Retinal degenerations are a leading cause of vision loss. RP is genetically very heterogeneous, and the multiple pathways leading to cell death are one reason for the slow progress in identifying suitable treatments for patients. Here we demonstrate that inhibition of LSD1and HDAC1 in a mouse model of RP leads to preservation of rod photoreceptors and visual function, retaining of expression of rod-specific genes, and with decreased inflammation, cell death, and Müller cell gliosis. We propose that these epigenetic inhibitors cause more open and accessible chromatin, allowing expression of neuroprotective genes. A second mechanism that allows rod photoreceptor survival is suppression of inflammation by epigenetic inhibitors in microglia. Manipulation of epigenetic modifiers is a new strategy to fight neurodegeneration in RP.


Histone Deacetylase 1/antagonists & inhibitors , Histone Demethylases/antagonists & inhibitors , Nerve Degeneration/pathology , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/metabolism , Animals , Cell Death/drug effects , Disease Models, Animal , Epigenesis, Genetic/drug effects , Female , Histone Deacetylase Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/pathology , Tranylcypromine/pharmacology
6.
Genes Brain Behav ; : e12759, 2021 Jun 10.
Article En | MEDLINE | ID: mdl-34114352

The genetic mechanisms of postoperative nausea and vomiting (PONV) and the involvement of the catecholamine system in the brain have not been elucidated. Eating kaolin clay as a type of pica has been examined as an alternative behavior to emesis. Here, we evaluated changes in whole-transcriptome analysis in the nucleus of the solitary tract (NTS) in a rat pica model as a surrogate behavior of PONV to elucidate the molecular genetic mechanisms of the development of PONV and the involvement of the catecholamine system in the NTS. First, kaolin pica behaviors were investigated in 71 female Wistar rats following isoflurane anesthesia, surgical insult or morphine administration. Multiple linear regression analysis showed that 3 mg/kg morphine increased kaolin intake by 2.8 g (P = 0.0002). Next, total RNA and protein were extracted from the dissected NTS, and whole-transcriptome sequencing (RNA-seq) was performed to identify PONV-associated genes and to verify the involvement of the catecholamine system. The gene expression levels of tyrosine hydroxylase and dopamine beta-hydroxylase in the catecholamine biosynthesis pathway decreased significantly in the PONV model. Release of noradrenaline, a catecholamine pathway end product, may have increased at the synaptic terminal of the NTS neuron after pica behavior. Systematic administration of α2 adrenergic receptor agonists after surgery reduced kaolin intake from 3.2 g (control) to 1.0 g (P = 0.0014). These results indicated that catecholamine neurotransmission was involved in the development of PONV in the NTS.

7.
J Cell Biol ; 220(8)2021 08 02.
Article En | MEDLINE | ID: mdl-34037658

Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.


Cellular Senescence , DNA Methylation , Epigenesis, Genetic , Fibroblasts/enzymology , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Interleukin-1alpha/metabolism , 9,10-Dimethyl-1,2-benzanthracene , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Cycle Checkpoints , Cell Proliferation , Female , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Interleukin-1alpha/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microscopy, Fluorescence , Papilloma/chemically induced , Papilloma/genetics , Papilloma/metabolism , Papilloma/pathology , Phenotype , Secretory Pathway , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tetradecanoylphorbol Acetate
8.
J Perinatol ; 41(3): 551-561, 2021 03.
Article En | MEDLINE | ID: mdl-33177681

OBJECTIVE: Extreme preterm infants are a growing population in neonatal intensive care units who carry a high mortality and morbidity. Multiple factors play a role in preterm birth, resulting in major impact on organogenesis leading to complications including bronchopulmonary dysplasia (BPD). The goal of this study was to identify biomarker signatures associated with prematurity and BPD. STUDY DESIGN: We analyzed miRNA and mRNA profiles in tracheal aspirates (TAs) from 55 infants receiving invasive mechanical ventilation. Twenty-eight infants were extremely preterm and diagnosed with BPD, and 27 were term babies receiving invasive mechanical ventilation for elective procedures. RESULT: We found 22 miRNAs and 33 genes differentially expressed (FDR < 0.05) in TAs of extreme preterm infants with BPD vs. term babies without BPD. Pathway analysis showed associations with inflammatory response, cellular growth/proliferation, and tissue development. CONCLUSIONS: Specific mRNA-miRNA signatures in TAs may serve as biomarkers for BPD pathogenesis, a consequence of extreme prematurity.


Bronchopulmonary Dysplasia , MicroRNAs , Premature Birth , Bronchopulmonary Dysplasia/genetics , Female , Humans , Infant , Infant, Newborn , Infant, Premature , MicroRNAs/genetics , Pregnancy , Transcriptome
9.
Elife ; 92020 12 23.
Article En | MEDLINE | ID: mdl-33355091

Synapse formation and regulation require signaling interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the αNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic αNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn-Nrxn signaling generates distinct functional properties at synapses.


Calcium-Binding Proteins/physiology , Cell Adhesion Molecules, Neuronal/physiology , GABAergic Neurons/physiology , Hippocampus/physiology , Membrane Proteins/physiology , Nerve Tissue Proteins/physiology , Neural Cell Adhesion Molecules/physiology , Animals , CA1 Region, Hippocampal/physiology , Female , Gene Knockdown Techniques , Male , Mice , Mice, Inbred C57BL , Synapses/physiology
10.
Nat Commun ; 11(1): 6118, 2020 11 30.
Article En | MEDLINE | ID: mdl-33257658

Inhibitors of poly-ADP-ribose polymerase 1 (PARPi) are highly effective in killing cells deficient in homologous recombination (HR); thus, PARPi have been clinically utilized to successfully treat BRCA2-mutant tumors. However, positive response to PARPi is not universal, even among patients with HR-deficiency. Here, we present the results of genome-wide CRISPR knockout and activation screens which reveal genetic determinants of PARPi response in wildtype or BRCA2-knockout cells. Strikingly, we report that depletion of the ubiquitin ligase HUWE1, or the histone acetyltransferase KAT5, top hits from our screens, robustly reverses the PARPi sensitivity caused by BRCA2-deficiency. We identify distinct mechanisms of resistance, in which HUWE1 loss increases RAD51 levels to partially restore HR, whereas KAT5 depletion rewires double strand break repair by promoting 53BP1 binding to double-strand breaks. Our work provides a comprehensive set of putative biomarkers that advance understanding of PARPi response, and identifies novel pathways of PARPi resistance in BRCA2-deficient cells.


Clustered Regularly Interspaced Short Palindromic Repeats , Poly(ADP-ribose) Polymerase Inhibitors/isolation & purification , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/drug effects , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Biomarkers , DNA Damage , DNA Repair , Gene Knockout Techniques , HeLa Cells , Homologous Recombination/drug effects , Humans , Lysine Acetyltransferase 5/metabolism , Mad2 Proteins/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Neuron ; 107(6): 1197-1211.e9, 2020 09 23.
Article En | MEDLINE | ID: mdl-32707082

Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.


Axon Guidance , Neural Stem Cells/cytology , Neuroglia/cytology , Animals , Axons/metabolism , Corpus Striatum/cytology , Corpus Striatum/growth & development , Dendritic Spines/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Globus Pallidus/cytology , Globus Pallidus/growth & development , Humans , Mice , Neural Stem Cells/metabolism , Neuroglia/metabolism , Pyramidal Tracts/cytology , Pyramidal Tracts/growth & development , Repressor Proteins/genetics , Repressor Proteins/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
12.
Blood ; 136(9): 1067-1079, 2020 08 27.
Article En | MEDLINE | ID: mdl-32396937

FLT3 is a frequently mutated gene that is highly associated with a poor prognosis in acute myeloid leukemia (AML). Despite initially responding to FLT3 inhibitors, most patients eventually relapse with drug resistance. The mechanism by which resistance arises and the initial response to drug treatment that promotes cell survival is unknown. Recent studies show that a transiently maintained subpopulation of drug-sensitive cells, so-called drug-tolerant "persisters" (DTPs), can survive cytotoxic drug exposure despite lacking resistance-conferring mutations. Using RNA sequencing and drug screening, we find that treatment of FLT3 internal tandem duplication AML cells with quizartinib, a selective FLT3 inhibitor, upregulates inflammatory genes in DTPs and thereby confers susceptibility to anti-inflammatory glucocorticoids (GCs). Mechanistically, the combination of FLT3 inhibitors and GCs enhances cell death of FLT3 mutant, but not wild-type, cells through GC-receptor-dependent upregulation of the proapoptotic protein BIM and proteasomal degradation of the antiapoptotic protein MCL-1. Moreover, the enhanced antileukemic activity by quizartinib and dexamethasone combination has been validated using primary AML patient samples and xenograft mouse models. Collectively, our study indicates that the combination of FLT3 inhibitors and GCs has the potential to eliminate DTPs and therefore prevent minimal residual disease, mutational drug resistance, and relapse in FLT3-mutant AML.


Antineoplastic Agents/therapeutic use , Glucocorticoids/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11/biosynthesis , Bcl-2-Like Protein 11/genetics , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Computer Simulation , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Drug Resistance, Neoplasm , Drug Synergism , Gene Expression Regulation, Leukemic/drug effects , Glucocorticoids/pharmacology , Humans , Inflammation/genetics , Mice , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplastic Stem Cells/drug effects , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/pharmacology , Selection, Genetic , Transcriptome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/genetics
13.
Int J Mol Sci ; 21(8)2020 Apr 13.
Article En | MEDLINE | ID: mdl-32294904

Osteochondromas are cartilage-capped growths located proximate to the physis that can cause skeletal deformities, pain, limited motion, and neurovascular impingement. Previous studies have demonstrated retinoic acid receptor gamma (RARγ) agonists to inhibit ectopic endochondral ossification, therefore we hypothesize that RARγ agonists can target on established osteochondromas. The purpose of this study was to examine the action of RARγ agonist in human osteochondromas. Osteochondroma specimens were obtained during surgery, subjected to explant culture and were treated with RARγ agonists or vehicles. Gene expression analysis confirmed the up-regulation of RARγ target genes in the explants treated with NRX 204647 and Palovarotene and revealed strong inhibition of cartilage matrix and increased extracellular matrix proteases gene expression. In addition, immunohistochemical staining for the neoepitope of protease-cleaved aggrecan indicated that RARγ agonist treatment stimulated cartilage matrix degradation. Interestingly, cell survival studies demonstrated that RARγ agonist treatment stimulated cell death. Moreover, RNA sequencing analysis indicates changes in multiple molecular pathways due to RARγ agonists treatment, showing similarly to human growth plate chondrocytes. Together, these findings suggest that RARγ agonist may exert anti-tumor function on osteochondromas by inhibiting matrix synthesis, promoting cartilage matrix degradation and stimulating cell death.


Bone Neoplasms/metabolism , Osteochondroma/metabolism , Receptors, Retinoic Acid/agonists , Animals , Biomarkers , Bone Neoplasms/drug therapy , Bone Neoplasms/etiology , Bone Neoplasms/pathology , Chondrocytes/metabolism , Chondrocytes/pathology , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , Growth Plate/metabolism , Growth Plate/pathology , Humans , Molecular Sequence Annotation , Osteochondroma/drug therapy , Osteochondroma/etiology , Osteochondroma/pathology , Signal Transduction , Tissue Culture Techniques , Transcriptome , Retinoic Acid Receptor gamma
15.
Mol Psychiatry ; 25(6): 1159-1174, 2020 06.
Article En | MEDLINE | ID: mdl-31439936

Exposure to stress during early life (infancy/childhood) has long-term effects on the structure and function of the prefrontal cortex (PFC), and increases the risk for adult depression and anxiety disorders. However, little is known about the molecular and cellular mechanisms of these effects. Here, we focused on changes induced by chronic maternal separation during the first 2 weeks of postnatal life. Unbiased mRNA expression profiling in the medial PFC (mPFC) of maternally separated (MS) pups identified an increased expression of myelin-related genes and a decreased expression of immediate early genes. Oligodendrocyte lineage markers and birthdating experiments indicated a precocious oligodendrocyte differentiation in the mPFC at P15, leading to a depletion of the oligodendrocyte progenitor pool in MS adults. We tested the role of neuronal activity in oligodendrogenesis, using designed receptors exclusively activated by designed drugs (DREADDs) techniques. hM4Di or hM3Dq constructs were transfected into mPFC neurons using fast-acting AAV8 viruses. Reduction of mPFC neuron excitability during the first 2 postnatal weeks caused a premature differentiation of oligodendrocytes similar to the MS pups, while chemogenetic activation normalised it in the MS animals. Bidirectional manipulation of neuron excitability in the mPFC during the P2-P14 period had long lasting effects on adult emotional behaviours and on temporal object recognition: hM4Di mimicked MS effects, while hM3Dq prevented the pro-depressive effects and short-term memory impairment of MS. Thus, our results identify neuronal activity as a critical target of early-life stress and demonstrate its function in controlling both postnatal oligodendrogenesis and adult mPFC-related behaviours.


Maternal Deprivation , Oligodendroglia/pathology , Stress, Psychological , Animals , Behavior, Animal , Cell Proliferation , Emotions , Female , Male , Mice , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Pregnancy
17.
J Cell Biol ; 218(10): 3336-3354, 2019 10 07.
Article En | MEDLINE | ID: mdl-31519728

The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.


Endosomal Sorting Complexes Required for Transport/metabolism , Phagosomes/metabolism , Cells, Cultured , HEK293 Cells , HeLa Cells , Humans
18.
Nat Commun ; 10(1): 3914, 2019 09 02.
Article En | MEDLINE | ID: mdl-31477715

YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAMLD1 fusions are sufficient to drive malignant transformation in mice, and the resulting tumors share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAMLD1 protein is mediated by MAMLD1 and independent of YAP1-Ser127 phosphorylation. Chromatin immunoprecipitation-sequencing analyses of human YAP1-MAMLD1-positive ependymoma reveal enrichment of NFI and TEAD transcription factor binding site motifs in YAP1-bound regulatory elements, suggesting a role for these transcription factors in YAP1-MAMLD1-driven tumorigenesis. Mutation of the TEAD binding site in the YAP1 fusion or repression of NFI targets prevents tumor induction in mice. Together, these results demonstrate that the YAP1-MAMLD1 fusion functions as an oncogenic driver of ependymoma through recruitment of TEADs and NFIs, indicating a rationale for preclinical studies to block the interaction between YAP1 fusions and NFI and TEAD transcription factors.


Adaptor Proteins, Signal Transducing/metabolism , Brain Neoplasms/metabolism , Carcinogenesis/metabolism , DNA-Binding Proteins/metabolism , Ependymoma/metabolism , NFI Transcription Factors/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA-Binding Proteins/genetics , Ependymoma/genetics , Ependymoma/pathology , HEK293 Cells , Humans , Mice , NFI Transcription Factors/genetics , NIH 3T3 Cells , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins
19.
Mol Med Rep ; 19(4): 3263-3272, 2019 Apr.
Article En | MEDLINE | ID: mdl-30816480

The impact of rare and damaging variants in genes associated with platelet function in large­vessel ischemic stroke (LVIS) remains unknown. The aim of this study was to investigate the contribution of some of these variants to the genetic susceptibility to LVIS in Polish patients using a deep re­sequencing of 54 selected genes, coding for proteins associated with altered platelet function. Targeted pooled re­sequencing (Illumina HiSeq 2500) was performed on genomic DNA of 500 cases (patients with history of clinically proven diagnosis of LVIS) and 500 age­, smoking status­, and sex­matched controls (no history of any type of stroke), and from the same population as patients with LVIS. After quality control and prioritization based on allele frequency and damaging probability, individual genotyping of all deleterious rare variants was performed in patients from the original cohort, and stratified to concomitant cardiac conditions differing between the study and stroke groups. We demonstrated a statistically significant increase in the number of rare and potentially damaging variants in some of the investigated genes in the LVIS pool (an increase in the genomic variants burden). Furthermore, we identified an association between LVIS and 6 rare functional and damaging variants in the Kv7.1 potassium channel gene (KCNQ1). The predicted functional properties (partial loss­of function) for the three most damaging variants in KCNQ1 coding locus were further confirmed in vitro by analyzing the membrane potential changes in cell lines co­transfected heterogeneously with human muscarinic type 1 receptor and wild­type or mutated KCNQ1 cDNA constructs using fluorescence imaging plate reader. The study demonstrated an increased rare variants burden for 54 genes associated with platelet function, and identified a putative role for rare damaging variants in the KCNQ1 gene on LVIS susceptibility in the Polish population.


Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , KCNQ1 Potassium Channel/genetics , Stroke/etiology , Alleles , Blood Platelets/metabolism , Case-Control Studies , Female , Gene Frequency , Genotype , Humans , Male , Open Reading Frames , Poland , Stroke/diagnosis
20.
Sci Rep ; 9(1): 2079, 2019 02 14.
Article En | MEDLINE | ID: mdl-30765773

Childhood obesity remains an epidemic in the U.S. and worldwide. However, little is understood regarding the epigenetic basis of obesity in adolescents. To investigate the cross-sectional association between DNA methylation level in obesity-related genes and body mass index (BMI) percentile, data from 263 adolescents in the population-based Penn State Child Cohort follow-up exam was analysed. Using DNA extracted from peripheral leukocytes, epigenome-wide single nucleotide resolution of DNA methylation in cytosine-phosphate-guanine (CpG) sites and surrounding regions was obtained. We used multivariable-adjusted linear regression models to assess the association between site-specific methylation level and age- and sex-specific BMI percentile. Hypergeometric and permutation tests were used to determine if obesity-related genes were significantly enriched among all intragenic sites that achieved a p < 0.05 throughout the epigenome. Among the 5,669 sites related to BMI percentile with p < 0.05, 28 were identified within obesity-related genes. Obesity-related genes were significantly enriched among 103,466 intragenic sites (Phypergeometric = 0.006; Ppermutation = 0.006). Moreover, increased methylation on one site within SIM1 was significantly related to higher BMI percentile (P = 4.2E-05). If externally validated, our data would suggest that DNA methylation in obesity-related genes may relate to obesity risk in adolescents.


DNA Methylation/genetics , Epigenesis, Genetic/genetics , Pediatric Obesity/genetics , Adolescent , Basic Helix-Loop-Helix Transcription Factors/genetics , Body Mass Index , Cohort Studies , CpG Islands/genetics , Cross-Sectional Studies , DNA/genetics , Epigenomics/methods , Female , Genome-Wide Association Study , Humans , Male , Obesity/genetics , Repressor Proteins/genetics , Risk Factors
...